ASIC Flow Enginefor Timing Closure (AFETC)
a Makefile Generator to Automate Design Budgeter
M ethodology.

Thomas D. Tessier, t2design I ncorporated
tomt@hdl-design.com

Marvin L. Anderson, StorageTek
marvin_anderson@stortek.com

ABSTRACT

In the DC98.08 tool release Synopsys added the capability for the designer to develop top level
constraints and then flow them downward to the lower level blocks in a more uniform method
than the previous process of Characterize, Compile and Write (CCW). This Synopsystool is
called the Design Budgeter. In order to flow the constraints the designer must, at a minimum, run
four invocations of DC on each module. The first pass generates a GTECH DB. The second run
develops a baseline for estimation. Invocation three applies the actual constraints to the blocks.
The fourth pass does an incremental cleanup of the design. It would be quite easy in amultiple
person team environment for the resulting net list to be incorrect with so many passes to manage.
We chose to manage our process flow with a script. Our Perl script was designed to generate
makefiles that automate the design flow. The use of the Perl script combined with a solid data
management system provides design groups a repeatable and predictable flow from RTL to gates
ready for layout.

1.0 Introduction

With today’s Deep Sub-Micron Designs (DSM), clock speeds are increasing, the number of gates
are multiplying, the time to market pressures are tightening and timing closure is a big problem.
Traditionally EDA tools have used a bottom-up compile strategy, an engineer is developing the
constraints at every level of hierarchy while the EDA tools compile the designs functional blocks
from the bottom to the top. Data flow management is human intensive which results in longer
iteration times and higher error possibilities.

The traditional staff breakdown used by ASIC design teams has been to either include a timing
engineer who was dedicated to work only on timing aspects of an ASIC or expect every engineer
on the team to be responsible for the timing of their own functional block. In the first case, the
dedicated engineer had to understand the design very intimately to make good timing judgements.
In the second case, when the chip is brought together combining the individual engineer’s
synthesis plans, “fur starts flying”. Both of these approaches use a bottom-up compile and
constraint strategy. Design team numbers are increasing because the designs are getting bigger.
Neither approach provides a very acceptable solution.

A long time desire of the engineering community was to have the ability to apply top level
constraints to their designs and have their EDA tools propagate them intelligently down through
the hierarchy. To provide a solution, many of Synopsys competitors tried a Top-Down compile
approach, which some refer to as hierarchical compile, applying constraints from the top and
compiling the entire design from the top down through the hierarchy. Top level constraints
improved the human management problem but as ASICs got larger and larger the Top-Down
compile tools could not manage all the data. The tools started to hit their capacity.

Synopsys Design Compiler has had significant increases in its capacity and capabilities over the
last several years. In Design Compiler (DC) 98.08 Synopsys added a tool called Design Budgeter.
The Design Budgeter allows the designer to develop only top level constraints and then flow them
downward to the lower level blocks in a more uniform method than the previous process of
Characterize, Compile and Write (CCW). Design Budgeter uses a Bottom-Up compile strategy
with a Top-Down constraint tool. While constraint building and flow is significantly improved,

the bottom-up compile strategy still has data management problems. In order to flow the
constraints with this tool the designer has to, at a minimum, run four invocations of DC on each
module. The first pass generates a GTECH DB. The second run develops a baseline for
estimation. Invocation three applies the actual constraints to the blocks. The fourth pass does an
incremental cleanup of the design.

For our DSM design project we chose a strategy that utilized the Design Budgeter combined with
the ASIC Flow Engine for Timing Closure the “AFETC” script to manage our process flow. Our
Perl script was designed to generate makefiles that automate the design flow. The use of the
AFETC combined with a solid data management system provides design groups with a repeatable
and predictable flow from RTL to gates that is ready for layout. Synopsys has since developed a
new tool Automated Chip Synthesis (ACS) which does accomplish some of the synthesis
management that we developed with our script.

SNUG San Jose 2000 2 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Many would ask why create yet another makefile generator when there are so many available? We
needed atool that could automate more of the flow then normally done in the ASIC environment.
We planned to run multiple iterations of our flow. Each time we would provide anet list to our in-
house layout group who would intern provide us with timing information. Our design team would
make the necessary adjustments given the timing data, using AFETC generated files to produce
additional iterations. The plan was to continue this cycle until we reached timing closure. For our
purposes timing closure is defined as the point at which the design team believes they have
acceptable timing marginsto release the chip. More iterations give us a better opportunity to alter
the design or timing paths to achieve a successful ASIC. The more iterations we ran meant
increasing amounts of data which created even a greater need for a automated data flow
management tool. We also needed checkpoints along the flow that were not obviously or easily
provided by other makefile tool generators. Finally we wanted to design aflow for synthesis,
incorporating timing closure, that could be leveraged and extended by future groups. Developing
this scripted system in-house seemed the most logical approach.

1.1 The Goalsof the AFETC Tool
We had very ssimple goals for the Perl script tool:

» Keep the design turn time from RTL to the first Layout net list at approximately 24 hours.
» Use TCL version of DC to provide a basis to expand the tool in the future.

« Build in sufficient hooks that allowed design problems to be resolved without breaking
down the base foundation of the tool.

* Focus the tool on 0.25u and below technologies

* Leverage in-house facilities whenever possible. We wanted to be able to run as many
iterations of layout as necessary to meet timing closure. Our tool base consisted of:
Synopsys Design Compiler, Floorplan Manager, PrimeTime and TetraMax; Avant! Planet
and Apollo; and VLSI Foundry tools.

SNUG San Jose 2000 3 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

2.0 TheFlow to Automate

The flow and the tool were developed with DSM designs in mind. The design of the data flow that
we wished to manage with AFETC evolved in parallel with the script itself. From the beginning
we knew we would use top level constraints which were easier to develop, reduce the stress on
everyone and let the tools handle the details. The flow took into account the iterative nature of
EDA tools and synthesis. The iterations of the Design Budgeter was one area of concentration
along with the loop between layout and synthesisto drive the timing closure. There are three main
divisonsof the flow. RTL to GTECH isalinear flow but we alowed the ability to restructure the
logical design to better match the physical domain. GTECH to Layout has severa iterative loops
for the budget process with the addition of floorplanning and location based optimization. Layout
timing closure is an iterative loop between place and route and synthesis to drive to timing
closure.

21RTL toGTECH

The RTL to GTECH step isimportant for two reasons; it prepares the input for automated
budgeting and it identifies any test issues as early asapossible. The flow we used for the designis
shown in Figure 1. on page 5. It can be debated that mapped designs used to drive the initial net
list should contain scan chains. In our case we concentrated on getting the core circuitry to pass
constraints relying on the Test Compiler to fix timing during the final insertion. Turnaround time
for the automated process is reasonable so the test evaluation can become a parallel task.

2.2 GTECH to Layout

Thisisthe heart of methodology as shown in Figure 2. on page 6. Most of the inputs or dataused

are from the resulting mapped and scanned design from the “pass 2” compile. The important
decision made here is whether the overall magnitude of the constraint violations, if any, require
another budgeting pass or a pass through the Floorplan Manager Location Based Optimization
(LBO). If the magnitude of the violations is large then another budget pass using PrimeTime
Budget is in order, otherwise we use Floorplan manager LBO. It is expected that the mapped
design resulting from the third pass is ready for layout, if not, then detailed analysis of the failing
paths is necessary to arrive at a solution.

2.3 Layout Timing Closure

After Place & Route and Clock Tree Synthesis is completed, equivalency check is run to verify
the design transformation. Once the new verilog net list is verified, extraction data is used to
create a SDF file with the foundry delay calculator. The timing is checked using PrimeTime. If
violations exist, analysis as to the best tool to fix the problem must be determined. Once a good
design is achieved, test vectors are created and simulated to make sure there are no problems.
After this step the chip is ready for final sign-off. As shown in Figure 3. on page 7 this loop can be
quite iterative and very time consuming. The analysis of the data and the decisions should not be
taken lightly. Experience and experimentation is the key to success with the timing closure loop.

SNUG San Jose 2000 4 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figurel. RTL to GTECH

Databasze

v

Create GTECH I

Regroup GTECH
Database for
floorplanning

Sawve GTECH
database I I-f,: GTECH Databaze)

v

For each RTL
Block
“compile -scan”
w/ null constraints

'

hiapped Design Budget Block Lewel Constraint=

Check Testability Add pads and
of each boundary =can

; wiarilog Metlist
Sequential RTL with foundry nog !)
block synthesized padring compiler ‘

v

Integrate Blocks Forant! Planet
to Build Chip

Hierarzhny *

* (Custom Wireload hodels)
Check Chip for
Testability

v

Inzert Intemal
Scan Test
Structures

Testability

v

Check Test
Cowverage

Check Chip for I

SNUG San Jose 2000 5 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure2. GTECH to Layout

database) C Block Lewel Constraints) [:Custom Wireload hiodels)

Full Chip { GTECH
Contraints |

Compile -scan

1

Y

HOTE
reset_design is performed priorto
applying annotation and constraint

information.

hlapped Design

Budget
-
1

|': Block Lewel Constraints)

Insert Intemal
Scan Test
Structures

Check Chip for
Testability

Compile hiapped Design

e

Y

hiapped Design
wizrilog Metlist
Forant! Planet

—--(Timing Contstraints)7

See Mote —(' ot load) -
PrimaTimea II# i sOF - POEF i

Ty

Floorplan hanager
PO

3

I

See Mote

Timing off by

large amournt™
wapped Design

WES

Timing Constraints

See Mote

wirilog Metlist

— g Pime=Time Budget
2

(: Blochk Lewel Constraints)

Compile I
- -incremerntal
() I

SNUG San Jose 2000 6 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 3. Layout Timing Closure

Full Chip “zrilog Metlist
Contraints Porant! Apollo

Y ¥
=&t load —(“wizrilog Metlist) (SPEF)

Preform design

|—p=| equivalence
chech

NOTE
rezet_design is performed prior to
applying annotation and constraint
infarmation.

Foundary Delay
Calculatar

Create Test
‘wizztars

_h. .
- PrimeTime Simulate Test
Lo hactors
Ses Mote
YES
Test hwectors
Simulate?
YES
MO *
I MO
Final Signoff
Sea Mote

Flaorplan higr
pass needed?

YES

=
]

Flaorplan hanager
IRO

H‘ll

“erilag Metlist

= Pwant! Apollo

Timing Constraints

7 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile

SNUG San Jose 2000
Generator to Automate Design Budgeter Methodology.

3.0 How AFTEC worksfrom RTL to Layout.

Our first attempts at automating the budget process were difficult. From reading the Synopsys
manual it appeared you needed to make three passes through Design Compiler (DC). However,
with our designs we needed to make 5 passes; we needed two passes to modify the GTECH based
data and three more passes for the budgeting process. We first scripted the flow up in the normal
way; many, many scriptsin serial. This process took daysto run and did not meet our goal of a
complete synthesis turn in approximately 24 hours.

Our local AE indicated that Synopsys was working on ACS (Automated Chip Synthesis) but it
would not be available for about 6 months. He also told us that another AE had built a M akefiles
system to automate the budget flow. The next day we had that tool (called build_make) and used
it as abaseline for our future enhancements. The build_make tool written in Perl, generates
Makefiles and support scripts. Thistool automated a portion of the GTECH to Layout flow; the
portion had only to do with the budgeting process.

We aso started with the build_make tool asit had many of the hooks necessary for the budget

process. We modified the script to output TCL (dc_shell-t) scripts thus providing a common basis

for future expansion. As you might have guessed writing a Perl script which outputs “make” and
“TCL” can make ones head spin.

The next modifications were to have the tool output two types of scripts automatically. We
identified two types of scripts; global scripts that would not be changed and generic scripts which
were templates and would have to be edited by the user. The script output names were chosen to
give the user a clue as to what needed to be edited, see Section 6.0 on page 19 for example of the
output. A “Makefile.inc” file was generated to allow the user to change the names of the scripts
and directories used by the “Makefiles.” Many TCL support scripts are written out to a tcl

directory which was accessible to any of the scripts.

We use GNU make to process the Makefiles. GNU make as many are aware from past SNUG
papers can run concurrent jobs. We exploited that feature on our dual and quad processor systems
to greatly improve run-times. We did not have access to LSF or similar queuing programs,
therefore the only compute based optimization attempted was on the same multiple processor
machine.

3.1 Budget Flow Improvements.

In this section we detail several improvements we made to the baseline build_make tool, which
allowed us to arrive at our own tool; ASIC Flow Engine for Timing Closure (AFETC). Key

among these was the addition of the RTL parser, the GTECH restructuring and the generation of
all the template files.

There are several shortcomings we discovered in the baseline build_make tool. Most of them had
to do with the fact we were automating a complete flow not just the budgeting process. First it
didn’t handle RTL code conversion to GTECH database. We added that feature by using the
Rough Verilog Parser (a Perl Module), see Section 5.1 on page 18, which would give us our
design hierarchy by reading in the Verilog. Using a front end parser like the RVP would allow a

SNUG San Jose 2000 8 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

design group the ability to use VHDL asthe input language as well as Verilog. The group that
developed SMART, see Section 5.1 on page 18, assumed that everything could be compiled in the
RTL directory. In our case, we included card and ASIC datain the samertl directory. Once we had
the RTL hierarchy we could easily do incremental re-compiles of the design, or so we thought.

The next obstacle was the fact that our designers were used to working on fine grained RTL, that
IS RTL which represents less that 5K gate blocks. With the new capacity of DC99.05 we could
easily do 20K to 50K gate blocks. To use DC99.05 efficiently we wanted to restructure the
GTECH design into larger blocks.

During the design restructuring we realized an added benefit in the physical domain. Our
floorplan tool (and Place and Route tool) worked better with bigger blocks. This allowed us
freedom to experiment in the physical realm without it impacting the development team. It was
very important to keep the logical design team focused on the verification effort. In doing the
restructuring we inadvertently broke our ability to map the logical RTL to the physical GTECH.
Thismay look like adrawback but we discovered that our overall run times were approximately a
day, so we accepted the inconvenience.

With all the data manipulation going on we quickly had a base budget flow with 5 steps:

e Pass (-2) RTL to GTECH mapping of logical design

Pass (-1) GTECH to optimized for physical design

Pass (0) Quick Synthesis with mapped gates to get a baseline budget.

Pass (1) Real top level constraints with pass 0 budgets to arrive at a workable design.

Pass (2+) Improvements on top level constraints and incremental improvements of design.

3.2 Thelmprovements- Linksto Layout.

As with any methodology this one kept on growing. Our next hurtle was to tie in the floor-
planning tool; we use Avant! Planet. At first we just wanted to use the wireload model from the
tool; then we discovered Synopsys Floorplan Manager (FPM) which is used for Location Based
Optimization (LBO) before (and after) we pass the design to detail place and route (P&R).

We decided that we needed a more accurate wireload model for our design than the standard
foundry provided linear model. Wireload models are very interesting as pointed out in the paper,
“Resistance is Futile, building better wireload models,” see Section 5.3 on page 18. We didn't
want to go through the design flow twice to use the wireload model; once with the foundry model
and a second time with our placement based model. It was decided to use the output of the Quick
Synthesis to build a wireload model. The Quick Synthesis mapped design is very fat, non optimal
design with most of the internal interfaces. This is a good starting point for the wireload models.
The wireloads are good as estimates and it is a real pain to determine if they are helping or hurting
your design.

After running the standard budget process we then went to the floorplan tool again to provide us
with placement based SDF and PDEF files. These files were then used within PrimeTime to

SNUG San Jose 2000 9 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

determine if this run we needed another iteration. Now we could run the design budgeter from
within PrimeTime to generate yet another set of constraints. Later we discovered we could get
better optimization based on a design which had just missed timing using FPM.

Our next improvement was to use FPM for LBO. We chose to use it both before and after detail
P&R to improve the design. Our basis for using FPM before going into layout was to give our in-
house Layout group aoptimal design from the very beginning in an effort to reduce the number of
ECOs that we processed.

The hook into FPM gave us a clean link to timing closure. Our biggest problems were the block
level interconnects. Many of the ESNUG articles over thislast year have highlighted the problems
with DSM designs and the interconnect. We chose to stick with our detailed routing capabilities
with Avant! to handle the top level interconnect. The ability to use FPM to forward annotate
placement datawas critical to our success.

Asinmost designs even the best tools still need help. Every global script that we used has hooks

into the script to allow the designer to change the constraints and the compile options. These were

setup on a block by block basis by using a simple convention. If a file called “my_module.scr” is
found in the working directory just before the compile step of the “dc_global.dct” script it is used

in place of the baseline compile and write commands. This hook allowed engineers to fiddle with
the constraints, change the compile options, add loads and anything else they wanted to do. In fact
they could “reset_design” and start over; but the flow has proven sound on our designs.

3.3TheReports

Our philosophy is that, you can never have too many reports. Well that is not quite true. You need
reports that tell you about the design. Throughout every phase of using DC we use the QOR
(Quality of Results) report to see if we are closing in on our constraints. It is interesting to note
that for every pass through DC the QOR reports for the most part, improved. If they didn’t
improve we had setup something wrong. The QOR reports were often used around an
optimization to see what improvements the tools made. Therefore we often had “pre_" and
“post_" files to review.

Other reports that were of interest to the engineers included:

e Latch and Loop reports which we used to detect possible HDL coding problems.

« Area reports for each block and the chip level; these were converted into a web page to
allow easy viewing.

« Timing violators report from PrimeTime for the following cases: “pre_floorplan,”
“post_floorplan_pre_layout,” “post_layout” and “post_extraction” were the most common
although many others were possible.

* Log files which were parsed with logscan, see Section 5.3 on page 18. To filter the output
of each run.

To keep things simple all the log messages were written to one log directory. This allowed easier
filtering of the data.

SNUG San Jose 2000 10 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

3.4 Directory Sructure

The directory structure took awhile to develop; it began to gel when we discovered that each
transformation of the data was to be considered a pass. One of the biggest changes to the

build_make tool was the reorganization of the directory structure in which the db files were

stored. The build_make tool had all the DC runs put datain the same directory, which made sense

at first because it was using the DC directory search order to find the data. After awhile we
discovered that MAKE was re-compiling things it shouldn’t have. This had more to do with our
use of the write command within the DC scripts then it did on any data dependencies. The
solution was to put each resulting pass into it's own directory.

We discovered later as we added the Floorplan tool and the LBO phases that this same approach
applied to the floorplan and layout tools as well. In Figure 4. on page 12 is shown what major
directories were used and how the data moved through them.

Now this seems like a lot of data to keep around; in reality it is not that much data when you
consider that at any point in the flow we could go backwards to what created the data. How many
times have you done an incremental DC optimization just to see the results get worse, but you
wrote over your current db? Using this organization it was easy to go backwards and start over.

An interesting side effect was the fact that as we transformed the data the pass numbers just keep
growing. The pass number was a MAKE variable which was easy to change on the command line.
This allowed the same Makefiles to drive multiple iterations. This also allowed the DC scripts to
use the pass number to determine what type of optimizations to do.

From Figure 4. on page 12 it became apparent there were several well defined operations the
resulting output from AFETC had to address. The operations are broken down into:

« RTL to GTECH - during this operation the RTL code is mapped to GTECH and then
converted into a more physical friendly form. The resulting database (gdb) was used as the
basis of future optimizations

« Initial Synthesis - took the “gdb” and performed a simple technology mapping. This
mapping was used to create the first budget and also the custom wireload models. The data
also was used for test validation.

* Budget and Floorplan Synthesis - is the meat of the operations. This takes the budgets
from database.0 and the floorplan and starts over with the gdb.

* Final Scan Insertion - is completed just before the net list is re-evaluated by the
floorplanner. This later time frame is chosen to optimize the synthesis time spent on
functional paths.

* Placement LBO - the placement only data to improve the large inter-block buses.
* Route with Clock Tree LBO - the timing closure loop.

From looking at this figure, it becomes apparent that whenever the net list took on a new form the
pass number was incremental. For example database.3 data was used by the floorplanning tool to
generate a pre-route SDF and PDEF file. Then the database.3 data was used by either FPM or

SNUG San Jose 2000 11 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 4. Directory Names and Data Flow

RTL to GTECH

fp/files.O

Initial Synthesis

Budget and Floorplan

Synthesis

V [
NN .

layout/files.4
\ /

V
layout/files.5
layout/files.6

PrimeTime to develop database.4 data. The act of floorplanning at this level did not create a new
net list. But, in the case of the layout/files.4 data the Apollo P& R tool took the database.4 data and
inserted the clock tree (among other things) this represents a change to the net list; which resulted
in layout/files.5 directory. All these numbers seem a bit overwhelming at first but after
considering net list transformations it becomes easier to think about.

Routewith Clock
TreeLBO

The numbering system for directories was a nice way to organize the data. The log, report and
constraint directories have a different method. For each file in these directories the following
approach was chosen. The file would be constructed with the form:

<module_name>.<prefix>.<pass>.<type>.
Where:

* <module_name> represents the design which created or was to operate on the data.

» <prefix> was a special code passed into the script to assist in identification of the report or
log. For example: “pre_floorplan” or “post_floorplan_pre_layout.” The prefix names were
designed to convey meaning to the reader.

SNUG San Jose 2000 12 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

e <pass> is the now famous pass variable of the data.
» <type> could be a report (rpt), log file (log) or a constraint (dcc).

The constraints were quite interesting in that the constraint files written from the design budgeting
tool “db_shell” were written in standard DC Shell language. Since we based all of our scripts on
“dc_shell-t” mode we needed to convert the results of the budget before using them in our scripts.
Make provides a method of implicit rules which make short order of this requirement.

The constraints are generated by the budget shell or by PrimeTime (budget process). During the
budget process the constraints are created for the next pass. For example if we are operating on
database.l (PASS=1) during the budget process the constraints are written with PASS=2 in the file
name. That is they are targeted to be used by PASS=2 operations. During the next run of the
synthesis process with PASS=2 the “dc_global” script is expecting the constraint file to be named

properly.

3.5 An Example of Running the Tooal.

Running the AFETC tool is quite easy after you have some basic information in place. The
AFETC tool is called twice to generate all the supporting scripts and Makefiles. Shown in Figure
5. on page 13 are the inputs used by AFETC and the calling sequence. AFETC is called once after
the RTL designlist is generated and again after the GTECH database is built and the gate level
designlist is available. From then on MAKE is used to perform the work.

Figure5. AFETC Calling Sequence

makefiles. RTL

MAKE

AFETC -r

gate.designlist

ATETE S (o=)
scripts
MAKE
SNUG San Jose 2000 13 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile

Generator to Automate Design Budgeter Methodology.

The design of the environment was based on the chip model shown in Figure 6. on page 14.
Where each block contains the following types of logic:
e generic_chip.v - contains, pads, JTAG cells and the instantiate the top.

e generic_top.v - contains the real core logic and accepts only input and outputs but no bi-
directional signals. This was due to allow better control over the constraints.

e generic_a.v, generic_b.v and gerneic_c.v are lower level modules.

Figure 6. Generic Chip

generic_chip.v
generic_top.v

generic_a_\l generic_Db.v

o, ————————
generic_c.v

Once the user had a simulating design and is ready to start the synthesis the first step is to generate
the hierarchy file used by the tool by invoking the “rvpn” tool the command line for the generic
design is:

rvpn -t generic_top../blm/generic_top.v ../bim/generic_a.v ../blm/generic_b.v ../blm/
generic_c.v > generic_top.verilog.designlist

A *.v could have replaced all the verilog files in this example. Next run the AFETC tool with the
designlist (see Section 6.0 on page 19 for listing of designlist file) to generate baseline scripts and
the “Makefile.RTL” using the command:

AFETC -r generic_top.verilog.designlist

The tool responds with what it is doing, see Figure 7. on page 15, which shows that the designlist
was processed to which level of hierarchy it considered important. The level can be changed by
using the -l option to the AFETC tool. Next the tool informs the user of what global and generic
level scripts it is generating. The listing for many of the scripts can be found, see Section 6.0 on
page 19.

SNUG San Jose 2000 14 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 7. Resultsof running AFECT

Using Designlist: generic_top.verilog.designlist

Info: Level 1:

generic_top

Info: Level 2:

..generic_a

..generic_b

Info: Level 3:

....generic_c

Bui | di ng RTL Specific Makefile: Mkefile.RTL

Creating DCT script file gt_gl obal.dct

Creating DCT script file gth_global.dct

Creating DCT script file dc_gl obal.dct

Creating DCH script file dch_global.dct

Creating Initial constraints script file generic_top.initial.dct
Creating DB script file db_global.dct

Creating Layout script file generic_|layout.dct

Creating Fp script file generic_fp.dct

Creating PT script file generic_pt.dct

Creating Area script file generic_area.dct

Creating Test Conpiler script file generic_tc.dct
Creating CGeneric Conpile Script file generic_conpile.scr
Creating Generic Wreload TCL file generic_wireload.tcl
Creating Ungroupd DesignWare TCL file ungroup_dw. tcl
Creating Generic Chip Conpile file generic_chip.dct
Creating CGeneric FPM Conpile file generic_fpmdct
Creating Makefile include file Makefile.inc

This should be edited before runni ng make

After you have run AFETC the first time, the tool is designed to not replace the script filesit finds
in the working directory. This was done to allow the user to edit the filesin place while
experimenting with the tool. The Makefiles (and two auxiliary files the Makefile.RTL and the
Makefile. GATES) are always rebuilt by AFETC, but provides the user the ability to write the
Makefiles to another name via the “-m” command line switch.

The tool requires that a top level constraint file be used for the budgeting process. If the user is
unsure they can copy the <top>.initial.dct over to <top>.dct and edit it to make the first pass at the
initial constraints. From the point that the user has good top level constraints the files should be
maintained in a revision control system and placed in the “Makefile.inc.”

The user then runs their first make command: “make setup” which builds several place-holder
directories and a few links for the constraint files. The following directories are built at this phase:

e fp - for the floorplan data.

« layout - for the layout data.

* log - for the log messages.

e reports - for the resulting reports.

« database.# - initial created for the first 2 passes

e gdb.# - for the GTECH design.

SNUG San Jose 2000 15 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

The user is now ready to run the first synthesis on the design. The user starts the synthesis with

“make all_gtech”. If they want to run with multiple jobs they use the --job=# switch if they are
using GNU Make. Now we have made a big assumption that the user has their environment setup
properly from the synopsys point of view. The user must provide a “.synopsys_dc.setup” file
which is valid for their design environment, and supports DC TCL mode.

The next operation is to link the design and build the hierarchical level of the database. This is
only a requirement if the user intends on changing the hierarchy of the GTECH design. For this
design we don’t plan on changing the hierarchy so the “gdb.0” and “gdb” directories are the same.
This command calls the “output_hier” tcl function to dump a new designlist called
“generic_top.designlist.” This designlist could be different if the hierarchy was modified at this
step. The AFETC tool is then run with this designlist to produce the “Makefile. GATES” file

which will be used to compile the gates. The command is “AFETC -d generic_top.designlist.”

As noted before the scripts will not be overwritten, but a new note about building the gate level
makefile is displayed. We are now ready to map the design with DC using the

“Makefile. GATES.” For the impatient engineer use the command “make budgets.0 PASS=0,”
which would compile the design bottom-up and run the initial budget pass. But, if you want to see
more of the steps use the “make all_hier PASS=0" and see what happens. You may note that the
design compiles from bottom-up and works just fine. If you have GNU Make running multiple
jobs it makes a mess of the display but gets the work done quickly. If you ran with the budget.0
command you would have built all the lower level modules, a hierarchal design and completed the
first budget pass on this design. The constraint files are located in the “constraint” directory ready
for the next pass. In the next pass you would do a “make budgets.1 PASS=1" and the process
would continue.

The AFETC tool is invoked twice because we believed that most designs will experience a
change from logical to physical hierarchy. The first time the tool is invoked it uses the output from
the “rvph” Rough Verilog Parser Hierarchy. The “rvph” parses the RTL code to understand the
hierarchy thus the dependencies within, when AFETC is run, produces the Makefiles and the
Makefile.RTL. The second time it is invoked it uses a list created after the complete GTECH
database is linked. A TCL script, “output_hier,” is called when the GTECH hierarchy is stitched
together (in it’s final form) The TCL script “output_hier” generates the proper output format for
AFETC. The second invocation of AFETC writes out the Makefile. GATES. The use of separate
Makefiles allow the design team the flexibility with an eye towards design productivity.

Once you have the first net list in database.O it is a good time to check your test coverage and if
your pad-ring will connect to your design. If you intend to floorplan the design this is a good time
to test your floorplan methodology. This is when the user will run into scripts that they need to
maintain as each tool vendor is different. The use of the option “make -n” is a valuable tool in
driving out script dependencies. If the user see’s “FIXUP” then the file needs to be edited in the
“Makefile.inc” and most likely the generic script needs to be modified. It is best if the generic is
given a specific name and the “Makefile.inc” points to that name.

SNUG San Jose 2000 16 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

4.0 Conclusions
AFETC as developed has worked on one very large project at the time of this paper.

Our goal from the beginning was to use the extra capacity and capabilities of Design Compiler to
drive our ASIC quicker to timing closure. Thefirst requirement wasto get the design from RTL to
Layout in about 24 hours. Thiswas accomplished by creating blocks that matched the capacity of
Design Compiler and exploiting the parallelism of GNU make.

The second requirement was to allow AFETC to be extendable to other design groups. Two ASIC
projects are just starting to use the tool. Hooks are in place to make this succeed.

The timing closure loop isvery tool intensive with many decision points. AFETC was devel oped
to generate data that would enable the design engineer to make decisions and use the tool to act
upon them. We have succeeded in our quest to uncover problems and develop solutions to the
timing closure issue. The AFETC tool provides the hooks necessary to allow a variety of EDA
tools and approaches to the timing closure issue with a focus on using Design Compiler,
PrimeTime and Floorplan Manager.

The key to the success of the tool is the flow that was developed along with the tool which should
work for at least another technology generation of foundry silicon.

4.1 Recommendations

A GUI build to setup the tool would be very handy but as of this time is unnecessary since using
the “rvpn” tool works from the Verilog source to drive the process.

Build a VHDL parser like “rvpn” to support VHDL.

The Makefiles should recursively call itself to arrive at a desired endpoint. For example if the
command “make PASS=2 chip” is issued the Makefiles should be smart enough to know if
PASS=0 and PASS=1 have been run in order to generate data needed by PASS=2.

The inclusion of some of the design engineer support tools like the Planet floorplanner should be
automated. This has more to do with our understanding of scripting in Planet than any tool
limitation. This issue could be solved with a little more time, but who has that?

The use of LSF or similar queuing program needs to be investigated. As at many companies this is
a cultural issue more than a technical one.

With all tools this one cannot address everyone’s needs. Specifically it does not address the needs
of the FPGA designers. Although they were considered for inclusion in this tool the widespread
differences in the tools suites would have caused great difficulty for everyone involved.

SNUG San Jose 2000 17 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

5.0 Acknowledgments

| could not have done it without the contribution of my co-author Marvin Anderson who often
pointed out rough spots in the flow and forever helped me in understanding the details of the test
ISSues.

The ASIC Technologies group; Walt, Marvin, Roger and Rob for pointing out why what | did
broke the downstream tools yet were still willing to find work-arounds.

The processor design team; Craig, Tony, Christina, Galen, Linda, David, Drew, Carlos, John and
Roger who endured many fits and starts with the tool as the first users. A specia thanksto
Maurice who understood what a challenge it was to produce thistool and was forever a sounding
board for my ideas.

The layout group; Tony, Dave and Richard whose input into what the Avant! tools needed was
invaluable to putting in the timing closure loop.

Finally my business partner (and wife) Terry Tessier for reviewing thisdry boring EDA paper
more times then she wants to consider.

5.1 Third Party Tools

Costas Calamvokis (v2html @iname.com) the devel oper of the Rough Verilog Parser and v2html
converter which makes short order of determining the hierarchical order of the RTL code so we
could add the hooks in for RTL to GTECH.

David C. Black the developer of LOGSCAN for recognizing the shear volume of datathat EDA
tools generate and arrived at a working solution to filtering the data for us humans.

5.2 Synopsys
Our loca Synopsys AE Jeffrey Flieder (flieder@synopsys.com) who provided guidance and
assistance to getting the Synopsysto Avant! timing closure flow functioning.

A special thanksto Jon Baldry former Synopsys RTL Synthesis CAE who provided the idea and
the baseline tool from which our tool sprang. We have leveraged his designlist concept and perl
scriptsto parse in numerous ways.

Synopsys for documenting everything, even if it is hard to find, in the on-line manuals. Once you
know you need the information you can find it. Too bad you are often looking after an unexpected
result:-(

5.3 SNUG’s Past

Resistance is Futile!, Building Better Wireload Models, Steve Golson presented at SNUG San
Jose 99.

SMART 2.0: The Makefile That Ate My Brain, Rodney Ramsay presented at SNUG San Jose 99.

SNUG San Jose 2000 18 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

6.0 AFETC Generated Filesof Interest

The AFETC tool generates many files. In the paper we give an example of asimple verilog design
which we parsed with AFETC. The following sections provide the files both used as input and
output for the AFETC program that are fundamental to its success.

6.1 The Designlist File

The designlist file has avery simple format. For each comma separated line contains the parent
followed by all of its children in the design hierarchy. When a parent has no children it isjust
listed by itself. Thisfileisfree form asthe AFETC tool has the ability to find the top of the tree.
Thisfile was created with the command:

rvpn -t generic_top ../blm/generic_top.v ../blm/generic_a.v ../blm/generic_b.v ../blm/
generic_c.v > generic_top.verilog.designlist

Figure 8. The “designlist” file for the generic example
This report was automaiically generated by bin/rvpn

Creation date: Mn Dec 13 13:15:31 1999
generi c_top, generic_a, generic_b
generic_a

generic_b, generic_c

generic_c

6.2 M akefiles

This section contains the sample Makefiles created by the AFETC tool on the simple verilog
example.

Figure 9. The root Makefile

MakefiTe generated by bin/AFETC\
- d\
generic_top. designli st
##
This fil e was auto-generated
by AFTEC Generated Script - Edit with care
##
Al edits here may be overwitten
Edit the include file to setup design and system paraneters to keep
| prom se to honor them
usage ::
echo "Usage of this Makefile"; \
echo " This Makefile is automaticly generated with the AFETC tool."; \
echo " The AFETC tool expects the user to have created a "; \
echo " <nodul e>. desi gnlist fromthe GIECH dat abase using the ??? funciton." ; \
echo " A sinpl e <nodul e>. designlist is shown below Wth this exanple a user ";
\
echo " coul d use the AFETC tool to generate a tenplate for generating "; \
echo " the GTECH design which includes the call to the ??? function. "; \
echo " Once the user has the <nodul e>. designlist file the AFETC tool is "; \
echo " used to generate all the supporting scripts and this Makefile."; \
echo " "; \
echo " The user is expected to supply a top level tinmng constraint file witten
II; \
echo " in the dc-Tcl |anguage which is conpatible with PrinmeTime. The filename is
II; \
echo " <nodul e>. con and should be located in the syn directory.";
SNUG San Jose 2000 19 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile

Generator to Automate Design Budgeter Methodology.

Figure9. Theroot Makefile

I'ncl ude MakefiTe.1nc

Now to do sonme checks for directories and stuff
${ RTLPATH} ::
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ GDBPATH}. 0 ::
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ GDBPATH}
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ DBPATH}. 0 ::
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${DBPATH} . 1 ::
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ DBPATH}. 2 ::
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

if nmore than two passes are necessary setup those directories.
${ DBPATH} . ${ PASS}

echo "Information: Cheching for directory $@;

if [! -d $@]; then nkdir $@ fi

${ REPSPATH}
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ CONSPATH} :
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi
cd $@ In -s ../${TOP_DESI G\}. ${ TCONEXT} .; cd ..

${ LOGSPATH}
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ LAYOUTPATH}
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

${ FLOORPLANPATH}
echo "Information: Cheching for directory $@;
if [! -d $@]; then nkdir $@ fi

This is a sinple rule to get the search_path
and |ink_path to db_shell
vl sidiv_dct.setup :: vlsidiv_dc.setup
${ DCTXSCRI PT} $< $@ nv $@tnp.tdct; sed "s/~echo/#echo/" tnp.tdct > $@

sinmple rule to ensure that the constraints are nodified
to something that works for DCT
${ CONSPATH} / % ${ TCONEXT} :: ${ CONSPATH}/ % ${ CONEXT}
${DCTXSCRI PT} $< $@ nv $@$(@).tdct; sed "s/”echo/#echo/" $(@).tdct > $@ rm

$(@).tdct

ONT o
${ LOGSPATH} \
${ LAYOUTPATH} \
${ FLOORPLANPATH} \
${ CONSPATH} ${ REPSPATH} \
${ DBPATH} . 0 ${DBPATH}. 1 ${DBPATH}.2 \

SNUG San Jose 2000 20 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure9. Theroot Makefile

${GDBPATH}. 0 \
${ GDBPATH} \

${ | NI TCONS} ${DCTSCR} ${DBSCR} vlsidiv_dct.setup \
${ TOP_DESI GN} . ${ TCONEXT}

setup :: .INT

cl ean_gtech ::
rm ${ LOGSPATH}/ * _gt ech* \
${ REPSPATH} / _gt ech*;

clean ::
rm ${ LOGSPATH}/ * \
${ REPSPATH} / * \
${ CONSPATH} / *. [0- 9] *. ${ CONEXT} \
${ CONSPATH} / *. [0- 9] *. ${ TCONEXT} \
${ CONSPATH} / *. [0- 9] *. ${ CONEXT} . chk \
${ DBPATH} . O/ *. ${ DBEXT} \
${ DBPATH} . 1/ *. ${ DBEXT} \
${ DBPATH} . 2/ *. ${ DBEXT} ;

Now for the serious stuff
al I _hier_gtech :: ${GDBPATH}/${ TOP_DESI GN\} _hi er . ${ GDBEXT}

al | _gtech :: ${GDBPATH} .0/ ${ TOP_DESI G\} . ${ GDBEXT}
all_hier :: ${DBPATH}.${PASS}/ ${ TOP_DESI G\} _hi er. ${ DBEXT}
all :: ${DBPATH}. ${ PASS}/ ${ TOP_DESI G\} . ${ DBEXT}

chip :: ${DBPATH}.${PASS}/${CH P_DESI G\} . ${ DBEXT}

verilog :: ${CHH P_DESI G\} _gates. ${ PASS}. v

2l ayout :: ${LAYOUTPATH}/ ${CHI P_DESI GN}. ${ PASS} . v

2fp :: ${FLOORPLANPATH}/fil es. ${ PASS}/ ${ CH P_DESI G\}. v
scan :: ${DBPATH}. ${PASS}/ ${ CHI P_DESI G\} _scan. ${ DBEXT}

Top design for GIECH
${ GCDBPATH} / ${ TOP_DESI G\} _hi er. ${ CDBEXT} :: ${DCGSCR} ${ GDBPATH}. 0/
${ TOP_DESI G\} . ${ GDBEXT}
${DCTSH} -x "set TDT des ${TOP_DESI G\};\
set TDT_gtech_hier ${GTECH ER};\
set TDT_gdbdir ${ GDBPATH}; set TDT_gdbext ${GDBEXT};\
set TDT_repdir ${REPSPATH}; "\
-f ${GTHSCR} | tee ${LOGSPATH}/${TOP_DESI G\} gt ech_hi er. ${ LOGEXT}

Top design for budgeting
${ DBPATH} . ${ PASS}/ ${ TOP_DESI G\} _hi er . ${ DBEXT} :: ${ DBPATH}. ${PASS}/
${ TOP_DESI G\} . ${ DBEXT} ${ DCHSCR}
${DCTSH} -x "set TDT des ${TOP_DESI G\};\

set TDT dont_use_cells ${XCELL};\

set TDT fpdir ${FLOORPLANPATH};\

set TDT_custom wirel oad ${ W RELOADS}; \

set TDT_foundry_lib ${FOUNDRY_LI B};\

set TDT_pass ${ PASS};set TDT_consdir ${CONSPATH};\

set TDT_dbdir ${DBPATH}; set TDT_dbext ${DBEXT};\

set TDT_gdbdir ${ GDBPATH}; set TDT_gdbext ${GDBEXT};\

set TDT_repdir ${REPSPATH}; set TDT_conext ${TCONEXT};"\

-f ${DCHSCR} | tee ${LOGSPATH}/${TOP DESI G\} hi er. ${ PASS}. ${ LOGEXT}

Top Level Tim ng Report
timng. ${ PASS} :: ${DBPATH}.${PASS}/ ${ TOP_DESI GN\} hi er. ${ DBEXT}
${DCTSH} -x "set TDT des ${TOP_DESI G\};\
set TDT_pass ${ PASS};set TDT_consdir ${CONSPATH};\
set TDT_dbdir ${DBPATH}; set TDT_dbext ${DBEXT};\
set TDT repdir ${REPSPATH};set TDT_conext ${TCONEXT}; read_db $<;\

SNUG San Jose 2000 21 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure9. Theroot Makefile

redirect [format "¥%%" [format "9%" [format "% [format "Ys¥%" ${ REPS-
PATH} {/}] ${TOP_DESIGN}] {.${PASS}}] {.timrpt}] { report_timng -max_path ${TI M NG
PATHS} -nworst 10 -path full -nosplit }; exit; "\

| tee ${LOGSPATH}/${ TOP_DESI GN} _ti m ng. ${ PASS}. ${ LOGEXT} && touch tim
i ng. ${ PASS}

H#
Setup of Chip Specific Data; each chip is different which is why we have this sec-

tion here
Hit
${ DBPATH} . ${ PASS} / ${ CH P_DESI G\} . ${ DBEXT} :: ${ DBPATH}. ${ PASS}/
${ TOP_DESI G\} _hi er. ${ DBEXT} ${ RTLPATH}/ ${ CHI P_DESI G\}. v
${DCTSH -x "set TDT des ${CHIP_DESI GN};\
set TDT_top $<;\
set TDT dont_use_cells ${XCELL};\
set TDT_rtl ${RTLPATH};\
set TDT_fpdir ${FLOORPLANPATH} ; \
set TDT custom wirel oad ${WRELOADS} \
set TDT foundry_lib ${ FOUNDRY_LIB};\
set TDT_pass ${ PASS};set TDT_ Consdi r ${ CONSPATH} ; \
set TDT dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\
set TDT repdir ${ REPSPATH} set TDT_conext ${TCCNEXT}"'\
-f ${DCCSCR} | tee ${LOGSPATH}/${CH P_DESI G\} . ${ PASS} . ${ LOGEXT}

Chip Level Timng Report
chip_timng. ${ PASS} :: ${DBPATH}. ${ PASS}/ ${ CHI P_DESI G\} . ${ DBEXT}
${DCTSH -x "set TDT _des ${CHI P_DESIG\};\

set TDT_pass ${PASS};set TDT consdir ${ CONSPATH} ; \

set TDT dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\

set TDT repdir ${ REPSPATH} set TDT_conext ${TCCNEXT}; read_db $<;\

redirect [format "%%" [for mat "%%" [format "%%" [format "U%s¥%s" ${REPS-
PATH} {/}] ${CHI P_DESIGN}] {.${PASS}}] {.timrpt}] { report_timng -max_path ${TI M
| NGPATHS} -nworst 10 -path full -nosplit }; exit; "\

| tee ${LOGSPATH}/ ${CHI P_DESI GN\} _ti m ng. ${ PASS}. ${ LOGEXT} && touch
chi p_tim ng. ${ PASS}

Chip | evel area and power
ar ea. ${ PASS} % ${ DBPATH} . ${ PASS}/ ${ CHI P DESIGN} ${ DBEXT} ${ APSCR}
${DCTSH} -x "set TDT des ${CH P_DESIGN\};\
set TDT pass ${ PASS}; set TDT_consdir ${ CONSPATH} ; \
set TDT dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCO\IEXT}"'\
-f ${APSCR} | tee ${LOGSPATH}/${CH P_DESI GN\} ar ea. ${ PASS}. ${ LOGEXT} && touch

ar ea. ${ PASS}

Chip Level Test Conpiler Run
tc. ${PASS} :: ${DBPATH}.${PASS}/${CHI P_DESI G\} _scan. ${ DBEXT} ${ TCSCR}
${DCTSH -x "set TDT des ${CHI P_DESI GN};\
set TDT_pass ${ PASS};set TDT_consdir ${CONSPATH};\
set TDT_dbdir ${DBPATH}; set TDT_dbext ${DBEXT};\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCONEXT};"\
-f ${TCSCR | tee ${LOGSPATH}/ ${CHI P_DESI G\} _tc. ${ PASS}. ${ LOGEXT} && touch

t c. ${ PASS}

Wite out the Verilog for the chip design.
${ CHI P_DESI G\} _gates. ${ PASS}.v :: ${DBPATH}. ${ PASS} / ${ CHI P_DESI G\} . ${ DBEXT}
${DCTSH} -x "set TDT_des ${CHI P_DESIGN\};\
set TDT_pass ${PASS};set TDT_consdir ${ CONSPATH} ; \
set TDT dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCCNEXT} \
read_db $<; wite -hi erarchy -format verilog -output $@; exit" | tee ${LOGS

PATH}/ ${ CH P_DESI G\} _gat es. ${ PASS} . ${ LOGEXT}

Wite out the Scanned Verilog for the chip design.
${ CHI P_DESI G\} _scan. ${ PASS}. v :: ${DBPATH}. ${ PASS}/ ${ CHI P_DESI G\} . ${ DBEXT}
${DCTSH -x "set TDT des ${CHI P_DESI G\};\

SNUG San Jose 2000 22 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure9. Theroot Makefile
Set TDI_top ${TOP_DESIGNJ;\
set TDT_pass ${PASS};set TDT_consdir ${CONSPATH};\
set TDT_dbdir ${DBPATH}; set TDT_dbext ${DBEXT};\
set TDT_repdir ${REPSPATH}; set TDT_conext ${TCONEXT};"\
-f ${TCSCR} | tee ${LOGSPATH}/${ CHI P_DESI G\} scan. ${ PASS}. ${ LOGEXT}

Chip Level PrimeTine Run from Layout information.
pt | ayout.${PASS} :: ${LAYOUTPATH}/${CH P_DESI GN}. ${ PASS} . ${ DBEXT} ${PTSCR}
${PTSH} -x "set TDT des ${CH P_DESI G\};\
set TDT_pass ${PASS};set TDT_consdir ${CONSPATH};\
set TDT_sdfdir ${LAYOUTPATH}; set TDT_sdf ext SDF;\
set TDT_dbdir ${LAYOUTPATH}; set TDT_dbext ${DBEXT};\
set TDT_repprefix .pt_layout.;\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCONEXT};"\
-f ${PTSCR} | tee ${LOGSPATH}/${CH P_DESI GN} pt | ayout.${ PASS}. ${ LOGEXT} && touch
pt _| ayout . ${ PASS}

Chi p Level Floorplan manager fromthe |ayout information.
fpm.| ayout. ${ PASS} :: ${ LAYOUTPATH}/ ${ CHI P_DESI G\} . ${ PASS} . ${ DBEXT} ${ FPM5CR}
${DCTSH} -x "set TDT_des ${CHI P_DESIGN};\
set TDT_pass ${PASS};set TDT consdir ${ CONSPATH} ; \
set TDT_sdfdir ${ LAYQJTPATH} set TDT_sdf ext SDF;\
set TDT_dbdir ${LAYOUTPATH};set TDT dbext ${ DBEXT} \
set TDT_phydir ${ LAYQJTPATH} \
set TDT_repprefix .fpmlayout.;\
set TDT repdir ${ REPSPATH} set TDT_conext ${TCONEXT}; "\
-f ${FPMSCR} | tee % L%SPATH}/SB{ CHI P_DESI GN} _f pm | ayout . ${ PASS} . ${ LOGEXT} &&
touch fpml ayout. ${ PASS}

Chip Level PrimeTinme Run from Fl oorpl an information.
pt _fp. ${ PASS} :: ${FLOORPLANPATH}/files. ${PASS}/${CH P_DESI G\} . ${ DBEXT} ${ PTSCR}
${PTSH -x "set TDT des ${CH P_DESI G\};\
set TDT_pass ${ PASS};set TDT_consdir ${CONSPATH};\
set TDT_sdfdir ${FLOORPLANPATH}/fil es.${PASS}; set TDT sdf ext SDF;\
set TDT dbdir ${FLOORPLANPATH}/fil es. ${ PASS}:set TDT dbext ${DBEXT};\
set TDT_repprefix .pt_fp.;\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCONEXT};"\
-f ${PTSCR | tee ${LOGSPATH}/ ${CHI P_DESI G\} pt fp. ${ PASS}. ${LOGEXT} && touch

pt _f p. ${ PASS}

Chip Level Floorplan manager fromthe floorplan information.
fpm fp. ${PASS} :: ${FLOORPLANPATH}/fil es. ${PASS}/ ${ CH P_DESI G\} . ${ DBEXT} ${FPM5CR}
${ FL(IRPLANPATH} /files. ${PASS}/ ${CH P_DESI G\} _set | oad. ${ TCONEXT}
${DCTSH} -x "set TDT_des ${CHI P_DESIGN\};\
set TDT pass ${PASS} ; set TDT_consdir ${ CONSPATH} ; \
set TDT_sdfdir ${ FLWPLANPATH}/fl | es. ${ PASS}; set TDT_sdf ext SDF;\
set TDT_dbdir ${DBPATH}; set TDT_dbext ${ DBEXT} \
set TDT_fpdir ${FLOORPLANPATH};\
set TDT_phydir ${ FLWPLANPATH}/fl | es. ${ PASS} ; \
set TDT _repprefix .fpmfp.;\
set TDT repdir ${ REPSPATH} set TDT_conext ${TCONEXT}; "\
-f ${FPMSCR} | tee % L%SPATH}/SB{ CHI P_DESI GN\} _f pm _f p. ${ PASS} . ${ LOGEXT} && touch
fpm f p. ${ PASS}

*** This operation done to the |layout directory
Wite out the Verilog for the top of the design.
since comments are not allowed in these streamfiles here is what we are doi ng:
1. read in the database
2. Call script
${ LAYOUTPATH} / fi | es. ${ PASS}/ ${ CHI P_DESI G\} . v :: ${ DBPATH} . ${ PASS}/
${ CHI P_DESI G\} . ${ DBEXT}
${DCTSH} -x "set TDT des ${CHI P_DESIG\};\
set TDT_pass ${PASS};set TDT_consdir ${ CONSPATH} ; \
set TDT dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\
set TDT_repdir ${REPSPATH};set TDT_conext ${TCCNEXT} \
set TDT | ayoutdir ${ LAYOUTPATH}/fl Tes. ${ PASS}; \
set TDT_hi erarchy ${CHI P_H ERARCHY};\
read_db $<; "\
-f ${LAYOUTSCR} | tee ${LOGSPATH}/${CHI P_DESI G\} _t ol ayout . ${ PASS} . ${ LOGEXT};

SNUG San Jose 2000 23 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure9. Theroot Makefile

*** This operation done to the floorplan director ***
Wite out the Verilog for the top of the design.
since coments are not allowed in these streamfiles here is what we are doi ng:
1. read in the database
6. run a script
${ FLOORPLANPATH} / fi | es. ${ PASS} / ${CHI P_DESI G\} . v :: ${ DBPATH}. ${ PASS}/
${ CHI P_DESI GN\} . ${ DBEXT}
${DCTSH} -x "set TDT _des ${CHIP_DESIG\};\
set TDT_pass ${PASS};set TDT consdir ${ CONSPATH} ; \
set TDT_dbdir ${ DBPATH} set TDT_dbext ${DBEXT};\
set TDT repdir ${ REPSPATH} set TDT_conext ${TCCNEXT} \
set TDT_fpdir ${ FLOG?PLANPATH}/f il es. ${ PASS};\
set TDT_hierarchy ${CH P_HI ERARCHY};\
read_db $<; "\
-f ${FPSCR} | tee ${LOGSPATH}/ ${CHI P_DESI G\} _2f p. ${ PASS} . ${ LOGEXT}

#
End of Chip Specific Stuff; beginning of the real nake and budget engine on a bot-

tom up basis.
#

Budget design
budget s. ${PASS} :: ${ DBPATH} ${ PASS}/ ${ TOP_DESI GN\} _hi er. ${ DBEXT} .synopsys_pt. setup
${DBSH} -f ${DBSCR} - x
set TDT dbdir ${ DBPATH} \
set TDT_pass ${PASS}; \
set TDT _custom wirel oad ${ W RELOADS}; \
set TDT_foundry_lib ${FOUNDRY_LI B};\
set TDT_consdir ${CONSPATH}; \
set TDT_consext ${CONEXT}; \
set TDT top_constraints ${ CONSPATH}/ ${ TCP_DESI GN} . ${ TCONEXT}; \
set TDT |evel 3; \
set TDT file $(<F);" | tee -a ${LOGSPATH}/ al | ocat e_budget . ${ PASS} . ${ LOGEXT} &&

touch budgets. ${ PASS}
Now to meke the actual designs
they are included to give us sone granularity in the design.

i ncl ude Makefile. RTL
i ncl ude Makefil e. GATES

end of Makefile

Figure 10. The Makefile.inc

AFETC Generated Script - Edit with care
Variables required by Mikefile Mkefile

H#
User should nodify this script, it will not be over
witten by another invocation of the AFETC scri pt
H#
H#

TOP Design Name (override this to nake | ower nodul es
TOP_DESI GN = generic_top

the chip | evel nane
CHI P_DESI GN = generic_chip

Directories and file exts

e R

RTL is the directory that rtl souce code will be found

RTLPATH = ../blm

VLOGEXT = v
SNUG San Jose 2000 24 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile

Generator to Automate Design Budgeter Methodology.

Figure 10. The Makefile.inc

CGDB is the directory that dc_shell will expect to read GIECH db’'s from
GDBPATH = gdb
GDBEXT = db

DB is the directory that dc_shell will wite db’s to
DBPATH = dat abase

DBEXT = db

CONSPATH is the directory that budget_shell will wite constraints to
and dc_shell will expect initial and top constraints to exist in
CONSPATH = constrai nt

CONEXT = dcc

TCONEXT = dct

initial constraints file
I Nl TCONS = generic_top.initial.dct

LOGSPATH is the directory that log files will be witten to
LOGSPATH = | og
LOGEXT = | og

LAYOUTPATH is the directory that to layout files will be witten to
LAYOUTPATH = | ayout

LAYOUTPATH is the directory that to layout files will be witten to
FLOORPLANPATH = fp

REPSPATH = reports directory for any reports witten from dc_shell
REPSPATH = reports

Execut abl es

SYNOPSYS is only used in this Make include to help find
paths to the executables
SYNOPSYS = /usr/synopsys/ ${ SYNOPSYS_VERSI ON} /

ARCH is only used in this Make include file
GETARCH = ${SYNOPSYS}/ admi n/install/syn/bin/getarch
HARD CODED BECAUSE | T DOESNT WORK

ARCH = $(GETARCH: sh)

ARCH = hpux10

DCSH is the full path to the dc_shell executable
DCSH = ${ SYNOPSYS}/ ${ ARCH}/ syn/ bi n/ dc_shel |
DCSH = run_synop dc_shel |

DCSH is the full path to the dc_shell executable
DCTSH = ${ SYNOPSYS}/ ${ ARCH} / syn/ bi n/ dc_shel | -t
DCTSH = run_synop dc_shel | -t

DBSH is the full path to the budget_shell executable
DBSH = ${ SYNOPSYS}/ ${ ARCH}/ syn/ bi n/ budget _shel |
DBSH = run_synop budget _shel |

PTSH is the full path to the pt_shell executable
PTSH = ${ SYNOPSYS}/ ${ ARCH}/ syn/ bi n/ pt _shel |
PTSH = run_synop pt_shell

TXSCRIPT is the util to translate dc scripts into pt scripts
TXSCRI PT = ${SYNOPSYS}/ ${ ARCH}/ syn/ bi n/transcri pt
TXSCRI PT = run_synop transcri pt

DCTXSCRIPT is the util to translate dc scripts into dct scripts
DCTXSCRI PT = ${ SYNOPSYS}/ ${ ARCH}/ syn/ bi n/ dc-transcri pt
DCTXSCRI PT = run_synop dc-transcri pt

FOUNDRY_SCREEN is the util or script to Screen netlists
FOUNDRY_SCREEN = ./ bin/vlsi_di22_screener. csh

SNUG San Jose 2000 25 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 10. The Makefile.inc

the Baseline Foundary library you are using, for the w rel oad nodel s.
FOUNDRY_LI B = vcs1083

Scripts

GIHSCR is the script that should be run to perform

the conpilation on the hierarchy version of the design

to ensure all the pieces are found and |inked together.

the groupdi ng and ungroupi ng takes place within this script.
GTHSCR = gt h_gl obal . dct

GISCR is the script that should be run to perform

the conpilation on the design using dc-t shell to build
the GTECH design. This script reads in the verilog from
the designlist and subdesign list, links and rights out
the GTECH dat abase

GISCR = gt _gl obal . dct

GIECH ER is a tcl file that contains variables that only
the designer could know how to change. Such things as
grouping and ungroupi ng and special cells for test.
GTECH ER = generic_top_hierarchy.tcl

DCSCR is the script that should be run to perform
the conpilation on the design
DCSCR = dc_gl obal . dct

DCTSCR is the script that should be run to perform
the conpilation on the design using dc-t shell.
DCTSCR = dc_gl obal . dct

DCTSCR is the script that should be run to perform
the conpilation on the design using dc-t shell.
DCHSCR = dch_gl obal . dct

DBSCR is the script that should be run to perform
the budgeting on the design
DBSCR = db_gl obal . dct

APSCR is the script that should be run to perform
the Area and Power analysis on the design
APSCR = generic_area. dct

TCSCR is the script that should be run to perform
the Test Conpiler Run for Scan insertion and stuff.
TCSCR = generic_tc.dct

DCCSCR is the script that should be run to perform
The |inking of top and chip together
DCCSCR = generi c_chip. dct

LAYOUTSCR is the script that should be run to perform
The |inking of top and chip together
LAYOUTSCR = FI XUP. | ayout . dct

FPMSCR is the script that should be run to perform
Fl oor pl an Manager |inks between floorplanning and | ayout.
FPMSCR = FI XUP. f pm dct

FPSCR is the script that should be run to perform
The |inking of top and chip together
FPSCR = generic_fp. dct

XCELL is the script that should be run

to force the exclusion of cells this is very
|ibrary dependant

XCELL = excluded_cell s. dct

A file which contains a linked list of wireload files

SNUG San Jose 2000 26 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 10. The Makefile.inc

W RELOADS = generic_w rel oad. dct
Sundry vari abl es

PASS is 0 for pre-budget >0 for post-budget
PASS = 0

TIM NGPATHS is 10 for sake of having a nunber. This is the nunber
of paths that are checked for tinmi ng checker. The larger the nunber
the nore paths validated.

TI M NGPATHS = 10

End of Make include file

Figure1l. The MakefileRTL

HH

This file was auto-generated

by AFTEC Generated Script - Edit with care

H#

Al edits here may be overwritten

Edit the include file to setup design and system paranmeters to keep
| promise to honor them

Now to meke the actual designs
${ GDBPATH} . 0/ generi c_a. ${ GDBEXT} : ${ RTLPATH}/generic_a. ${ VLOGEXT}
${DCTSH -x "set TDT_des generic_a;\
set TDT_subs {};\
set TDT_rtldir ${RTLPATH};\
set TDT_vl ogext ${VLOGEXT};\
set TDT_gdbdir ${GDBPATH}.O0;set TDT_gdbext ${GDBEXT};\
set TDT_repdir ${REPSPATH}; "\
-f ${GISCR} | tee ${LOGSPATH}/generic_a. gt ech. ${ LOGEXT}

${ GDBPATH} . 0/ generi c_b. ${ GDBEXT} : ${RTLPATH}/generic_b. ${ VLOGEXT}\
${ GDBPATH} . 0/ gener i c_c. ${ GDBEXT}
${DCTSH} -x "set TDT _des generic_b;\
set TDT_subs {};\
set TDT_rtldir ${RTLPATH};\
set TDT_vl ogext ${VLOGEXT};\
set TDT_gdbdir ${GDBPATH}.O0;set TDT_gdbext ${GDBEXT};\
set TDT_repdir ${REPSPATH}; "\
-f ${GTSCR} | tee ${LOGSPATH}/generic_b. gt ech. ${ LOGEXT}

${ GDBPATH} . 0/ generi c_c. ${ GDBEXT} : ${RTLPATH}/generic_c. ${VLOGEXT}
${DCTSH -x "set TDT_des generic_c;)\
set TDT_subs {};\
set TDT_rtldir ${RTLPATH};\
set TDT_vl ogext ${VLOGEXT};\
set TDT_gdbdir ${GDBPATH}.O0;set TDT_gdbext ${GDBEXT};\
set TDT_repdir ${REPSPATH}; "\
-f ${GISCR} | tee ${LOGSPATH}/generic_c. gt ech. ${ LOGEXT}

${ GDBPATH} . 0/ generi c_t op. ${ GDBEXT} : ${RTLPATH}/generic_t op. ${ VLOGEXT}\
${ GDBPATH} . 0/ generi c_a. ${ GDBEXT}\
${ GDBPATH} . 0/ generi c_b. ${ GDBEXT}
${DCTSH -x "set TDT _des generic_top;\
set TDT_subs {};\
set TDT_rtldir ${RTLPATH};\
set TDT_vl ogext ${VLOGEXT};\
set TDT_gdbdir ${GDBPATH}.O0;set TDT_gdbext ${GDBEXT};\
set TDT_repdir ${REPSPATH}; "\
-f ${GISCR} | tee ${LOGSPATH}/generic_top. gt ech. ${ LOGEXT}

end of file

SNUG San Jose 2000 27 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure12. The Makefile GATES

HH

This file was auto-generated

by AFETC Generated Script - Edit with care

H#

Al edits here may be overwritten

Edit the include file to setup design and system paranmeters to keep
| promise to honor them

now t he real design
${ CONSPATH} / generi c_a. 2. ${ TCONEXT} : ${CONSPATH}/ generi c_a. 2. ${ CONEXT}

${ CONSPATH} / generic_a. 1. ${ TCONEXT} : ${CONSPATH}/ generi c_a. 1. ${ CONEXT}

${ CONSPATH} / generi c_a. 0. ${ TCONEXT} :
rm-f $@ In -s ../${I NI TCONS} $@

${ DBPATH} . ${ PASS} / generi c_a. ${ DBEXT} : ${GDBPATH}/generic_a. ${ GDBEXT}\
${ CONSPATH} / gener i c_a. ${ PASS} . ${ TCONEXT}
${DCTSH -x "set TDT_des generic a \
set TDT dont use cells ${XCELL};\
set TDT subs {};\
set TDT pass ${ PASS} ; set TDT_consdir ${ CONSPATH;} ;\
set TDT fpdir ${FLOORPLANPATH}; \
set TDT customwirel oad ${ W RELQADS}; \
set TDT foundry_lib ${FOUNDRY_LIB};\
set TDT_initcons ${I Nl TCONS};\
set TDT dbdir ${DBPATH};set TDT_dbext ${DBEXT};\
set TDT_gdbdir ${GDBPATH}; set TDT_gdbext ${GDBEXT};\
set TDT repdir ${REPSPATH}; set TDT_conext ${ TCONEXT};"\
-f ${DCTSCR} | tee ${LOGSPATH}/generic_a. dct sh. ${ PASS}. ${ LOGEXT}

${ CONSPATH} / generic_b. 2. ${ TCONEXT} : ${CONSPATH}/ generi c_b. 2. ${ CONEXT}
${ CONSPATH} / generic_b. 1. ${ TCONEXT} : ${CONSPATH}/ generi c_b. 1. ${ CONEXT}

${ CONSPATH} / generi c_b. 0. ${ TCONEXT} :
rm-f $@ In -s ../${I NITCONS} $@

${ DBPATH} . ${ PASS} / generic_b. ${ DBEXT} : ${GDBPATH}/generic_b. ${ GDBEXT}\
${ CONSPATH} / generi c_b. ${ PASS} . ${ TCONEXT} \
${ DBPATH} . ${ PASS}/ generi c_c. ${ DBEXT}
${DCTSH} -x "set TDT_des generic_ b \
set TDT dont use cells ${XCELL};\
set TDT subs {};\
set TDT pass ${ PASS} set TDT_consdir ${CONSPATH;} ;\
set TDT fpdir ${ FLOORPLANPATH} ; \
set TDT customwirel oad ${W RELOADS} \
set TDT foundry_|ib ${FOUNDRY LIB};\
set TDT_initcons ${I NI TCONS}; |
set TDT dbdir ${DBPATH};set TDT_dbext ${DBEXT};\
set TDT gdbdir ${ GDBPATH} set TDT_gdbext ${GDBEXT} \
set TDT repdir ${ REPSPATH} set TDT_conext ${TCCNEXT} "\
-f ${DCTSCR} | tee ${ LOGSPATH}/generl c_b.dctsh. ${ PASS} ${ LOGEXT}

${ CONSPATH} / generic_c. 2. ${ TCONEXT} : ${CONSPATH}/ generi c_c. 2. ${ CONEXT}
${ CONSPATH} / generic_c. 1. ${ TCONEXT} : ${CONSPATH}/ generi c_c. 1. ${ CONEXT}

${ CONSPATH} / generic_c. 0. ${ TCONEXT} :
rm-f $@ In -s ../${I NI TCONS} $@

${ DBPATH} . ${ PASS} / generic_c. ${ DBEXT} : ${GDBPATH}/generic_c. ${ GDBEXT}\
${ CONSPATH} / generi c_c. ${ PASS} . ${ TCONEXT}
${DCTSH} -x "set TDT_des generic_ c \
set TDT dont use cells ${XCELL};\
set TDT subs {};\
set TDT pass ${ PASS} ; set TDT_consdir ${ CONSPATH;} ;\
set TDT fpdir ${ FLOORPLANPATH} ; \

SNUG San Jose 2000 28 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure12. The Makefile GATES

set TDT_custom w rel oad ${W RELOADS}; \

set TDT_foundry_lib ${FOUNDRY_LI B};\

set TDT_initcons ${1 N TCONS};\

set TDT_dbdir ${DBPATH}; set TDT_dbext ${DBEXT};\

set TDT_gdbdir ${GDBPATH}; set TDT_gdbext ${GDBEXT};\

set TDT_repdir ${REPSPATH}; set TDT_conext ${TCONEXT}; "\

-f ${DCTSCR} | tee ${LOGSPATH}/generic_c.dctsh. ${ PASS}. ${ LOGEXT}

${ CONSPATH} / generi c_t op. ${ PASS}. ${ TCONEXT} : ${ CONSPATH}/ generi c_t op. ${ TCONEXT}
rm-f $@ In -s $(<F) $@

${ DBPATH} . ${ PASS} / generi c_t op. ${ DBEXT} : ${GDBPATH}/generic_top. ${ GDBEXT}\
${ CONSPATH} / generi c_t op. ${ PASS} . ${ TCONEXT}\
${ DBPATH} . ${ PASS}/ generi c_a. ${ DBEXT}\
${ DBPATH} . ${ PASS}/ generi c_b. ${ DBEXT}
${DCTSH -x "set TDT_des generic_top;\
set TDT dont _use cells ${XCELL};\
set TDT_subs {};\
set TDT_pass ${PASS};set TDT_consdir ${CONSPATH;};\
set TDT fpdir ${FLOORPLANPATH}; \
set TDT custom wirel oad ${ W RELQADS}; \
set TDT foundry_lib ${FOUNDRY_LIB};\
set TDT_initcons ${I Nl TCONS};\
set TDT dbdir ${DBPATH};set TDT_dbext ${DBEXT};\
set TDT_gdbdir ${GDBPATH}; set TDT_gdbext ${GDBEXT};\
set TDT repdir ${REPSPATH}; set TDT_conext ${ TCONEXT};"\
-f ${DCTSCR} | tee ${LOGSPATH}/generic_top.dctsh. ${PASS}. ${ LOGEXT}

end of file

6.3 Global Scripts
This section contains many of the global scripts created by the “build_make” tool.

The gt_global is used by all the RTL to compiled. This is a very simple script.

Figure 13. Thegt_global.dct Script

AFTEC Generated Script - Edit wth care

generic conpile script for

#

Creating bottom|evel GIECH databases from Veril og.

#

if { $TDT_vl ogext == "" } {
echo {Error: variable TDT_vl ogext nust be set to the file ext}
exit 1

if { $TDT_rtldir == "" } {
echo {Error: variable TDT_rtldir nmust be set to the directory containing RTL}
exit 1

}

if { $TDT_gdbext == "" } {
echo {Error: variable TDT_gdbext nust be set to the GIECH DB file ext}
exit 1

}

if { $TDT_gdbdir == "" } {
echo {Error: variable TDT_gdb rmust be set to the directory containi ng GTECH DBs}
exit 1

}

if { $TDT_repdir =="" } {

echo {Warning: TDT_repdir not set, will wite reports to cwd}
set TDT_repdir {.}

}
if { $TDT_subs == "" } {
set TDT_subs [list]
}
if { $TDT_des == "" } {
SNUG San Jose 2000 29 ASIC Flow Enginefor Timing Closure (AFETC) aMakefile

Generator to Automate Design Budgeter Methodology.

Figure 13. Thegt_global.dct Script
echo {Error: design not specifred rn TDI_des vari abl e}
exit 1

}

Modify the search path so that the already optimzed childen are found:
set _search_path [format "%%" {./} $TDT_rtldir]
set search_path [concat $_search_path $search_path]

Lots of errors will be had if it cannot find the GITECH dat abases in the search

engi ne but
this is what we want at this |evel.

echo {Info: reading all Verilog subdesigns}

foreach TDT_gdbsub $TDT subs {

read_verilog [format "%%" [format "%%" [format "% %" [format "Y%%"
$TDT_rtldir {/}] $TDT_gdbsub] {.}] $TDT_ vl ogext]

}

read_verilog [format "%%" [format "%%" [format "%%" [format "%%"
$TDT_rtldir {/}] $TDT_des] {.}] $TDT_vl ogext]

i nk

now wite out the design so we have access to it for future stages:
this is necessary to control where it puts the designs for future reference
foreach_in_collection d [get_designs] {

current _design $d

wite -format db -output $TDT_gdbdir/ $current_desi gn. $TDT_gdbext

#
exit
end of file

The dc_global.dct isthe script used to compile all lower level blocks. Notice the tests code for the

pass variable and the extensive use of the “current_design” variable to make it portable. Of
special interest is the trap just before compile to include your own “<module>.scr” to override the
compile.

Figure 14. Thedc_global.dct Script
AFETC Generated Script - Edit with care
generic conpile script for
usi ng and creating
desi gn budgeti ng passes

o H I

map efforts for conpile runs
set TDT_passO_map_effort {med}
set TDT_passl_map_effort {med}
set TDT_pass2_map_effort {med}

if { $TDT_gdbext == "" {
echo {Error: variable TDT_gdbext nust be set to the GIECH DB file ext}
exit 1

}
if { $TDI_dbext == "" {
echo {Error: variable TDT_dbext nust be set to the mapped DB file ext}

exit 1

if { $TDI_dbdir == "" } {
echo {Error: variable TDT_db nust be set to the directory containing mapped DBs}
exit 1

}

set TDT dbdir_src [format "%%" [format "%¥%" $TDT dbdir {.}] [expr $TDT_pass -
1]

SNUG San Jose 2000 30 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 14. Thedc_global.dct Script

set TDT_dbdir [format "UsYs" [format "UsY%" STDT_dbdit {.} | $TDI_pass |

if { $TDT_gdbdir == "" } {
echo {Error: variable TDT_gdb rmust be set to the directory containi ng GTECH DBs}
exit 1

}

if { $TDT_repdir == ""}

{
echo {Warning: TDT_repdir not set, will wite reports to cwd}
set TDT_repdir {.}

}
if { $TDT_initcons == "" } {
echo {Error: initial constraint variable TDT_intcons not set}
exit 1
}
if { $TDT _consdir == "" } {
echo {Error: constraint directory variable TDT_consdir not set}
exit 1
}
if { $TDT_subs == "" } {
set TDT_subs [list]
}
if { $TDI_des == "" } {
echo {Error: design not specified in TDT_des vari abl e}
exit 1
}

if { $TDT_pass >= 1} {
Modify the search path so that the already optim zed childen are found:
set _search_path [format "%%" {./} $TDT_dbdir]
set search_path [concat $_search_path $search_path]
Modify the search path so that if this is the bottomit will find its source.
set _search_path [format "%%" {./} $TDT_dbdir_src]
set search_path [concat $_search_path $search_path]
} # else No search path for pass 0 as we want each db file to stand on
its omm. This was a real pain to figure out.

if { $TDT_pass < 2 } {

echo {Info: reading all GTECH subdesi gns}

foreach TDT_gdbsub $TDT subs {

read_file [format "%%" [format "%%" [format "%%" [format "%%"
$TDT_gdbdir {/}] $TDT_gdbsub] {.}] $TDT_gdbext]

set _dont _t ouch $TDT_gdbsub {fal se}

relys on search path to find the already mapped DB files.
read file [format "9%%" [format "%%" [format "%%" [format "Y%%s"
$TDT_gdbdir {/}] $TDT_des] {.}] $TDT_gdbext]
} else {
relys on search path to find subsequent designs
echo {Info: readi ng napped desi gn}
foreach TDT_dbsub $TDT_subs {
read_file [format "9%%" [format "%%" [format "%%" [format "%%"
$TDT_dbdir_src {/}] $TDT dbsub] {.}] $TDT_dbext]
set _dont _touch $TDT dbsub {fal se}

read_file [format "%%" [format "%%" [format "%%" [format "%%"
$TDT_dbdir_src {/}] $TDT des] {.}] $TDT dbext]
}

i nk

grab the constraints setup in the .dc_setup file.

set _operating_conditions -max $operating_conditions_max -mn
$operating_conditions_mnin

set_wire_|oad -selection_group $wire_|l oad_sel ecti on_group
set_wire_l oad -nbde $wire_| oad_npde

if { $TDT_pass == 0 } {
echo {Warning: setting dont_use on all rpl inplenentations in standard. sl db}
set _dont _use standard. sl db/*/rpl

SNUG San Jose 2000 31 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 14. Thedc_global.dct Script

the renoval of all rpls was a [1ttle exirene as this cause a very interesting
side effect of renoving several logic operators. This puts back the conpares
which seens to fix the problem

remove_attribute standard.sldb/*cmp*/rpl dont_use

echo {Info: including initial constraints}

source $TDT_initcons

} else {
echo [format "%%" {Info: including design constraints for } $current_design]
set _constraint_file_in [format "%%" [format "%%" [format "%%" [format
"¥9%s" [format "9sYs" [format "%s%" $TDT_consdir {/}] $current_design] {.}]

$TDT_pass] {.}] $TDT_conext]
source $ constraint file in
}

set _report_file_out [format "%%" [format "% %" [format "¥%%" $TDT _repdir {/
}1 S$current _design] {.chk.rpt}]

redirect $ report_file_out { check_timng }

echo {Uniquifying design to solve non-unique instantiations}

uni qui fy

redirect -append $_report_file_out { check_design }

grab the excluded cells script if necessary

if { $TDT_dont_use_cells == ""} {
echo {Info: No Excluded Cell s}
} else {

echo [format "%%" {Info: Reading Excluded Cells List: } $TDT_dont_use_cell s]
source $TDT_dont_use_cells

}

customwi reload files if the side file exists
#
if { $TDI_pass >= 1} {

if { [file exists $TDT_custom wi rel oad]
echo [format "%%" {Info: Reading Wreload Tcl File - } $TDT_cust om wi r el oad]
source $TDT_custom wi rel oad
now interate on the file until we have read in all the wirel oads and attached
themto the target library
foreach _ny_fp $WrelLoadFiles {
set wireload file [format "% %" [format "% %" $TDT fpdir {/}] $_ny_fp]
if { [file exists $_wireload_file] } {
update lib $TDT foundry lib $ wireload file
echo [format "%%" {Info: Reading in Wreload File } $ wireload_file]
} else {
echo [format "% %" [format "% %" {Warning: Wreload File } $ wireload_file]

{ Not i:ound.}]

now t hat we have the wirel oad nodels we need to attach the correct wrel oad

nodel to
our design so that we can performfurther optimzations

first find a matching wireload table that is suppose to be used for the

current _nodul e
foreach _w $Wreloads {
if { [Isearch $designWreLoad($_wW) $current_design] >= 0 } {

echo [format "%%" {Info: Found Wreload } $designWrelLoad($ w)]

if { [set_wire_load $_w -npde enclosed] } {
renove the auto select if we have our own as it defaults to true
set auto wire_|oad selection fal se
echo [format "% %" {Info: Applied DesignWrelLoad } $ W]

br eak
} else {
echo [format "% %" {Info: No DesignWreLoad Found for } $current_design]

SNUG San Jose 2000 32 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 14. Thedc_global.dct Script

} else {
echo [format "% %" [format "% %" [format "% %" {Info: No CustomWreload File:

} $TDT _customwireload | { or Pass not greater than 1: }] $TDT_pass]
}
}

each design is allowed a customconpile script that has the same format as bel ow
but allows the user to control how this nodule gets conpiled. This is setup to

al | ow
the user flexiblity in the design.
set _conpile_script [format "%%" $TDT _des {.scr}]
if { [file exists $_conpile_script] } {
echo [format "%%" {Info: Reading Conpile Script - } $ conpile_script]
source $_conpil e_scri pt
} else {
echo [format "% %" {Info: conpiling design } $current_design]
if { $TDT_pass == 0 } {
conpil e -scan -map $TDT_passO_map_effort
} else {
if { $TDT_pass == 1} {
conpil e -scan -map $TDT_passl_map_effort
} else {
if we are on the |ast passes then ungroup the design ware conmponents
as synopsys should have made good choi ces by now and we could get a little
nmore optimzation by removing this |ayer of hierarchy. ## Hard pathed TCL

script.
sour ce ungroup_dw. tcl
ungr oup_dw - hi er
conpile -scan -incr -map $TDT_pass2_map_effort
}
}
}

set _dont _touch $current _design {true}
if { $TDT_subs != [list]

set _file_out [format "%%" [format "%%" [format "%%" [format "Y%¥%s"
$TDT_dbdir {/}] $current_design] {.}] $TDT_dbext]

wite -h -o $_file_out
} else {

set _file_out [format "%%" [format "%%" [format "%%" [format "Y%¥%s"
$TDT_dbdir {/}] $current_design] {.}] $TDT_dbext]

wite -0 $_file_out
}

this alters conparison with hier conpile

set _report_file_out [format "%%" [format "%%" [format "%%" [format "%%"
[format "% %" $TDT repdir {/}] S$current_design] {.pass}] $TDT _pass] {.qor.rpt}]
redirect $_report_file_out { report_qor

set _report_file_out [format "%%" [format "%%" [format "%%" [format "%%"
[format "% %" $TDT repdir {/}] S$current_design] {.pass}] $TDT pass] {.timrpt}]
redirect $_report_file_out { report_timng -max_path 10 -nworst 10 -path short }

#
exit
end of file

The dch_global.dct was used to build the hierarchy design. Many of the notable snipsin this code

is the generation of a “my_<foundary_lib>.db” to support the use of custom wireloads.

Figure 15. The dch_global.dct Script

AFETC CGenerated Script - Edit wth care
Generations of a H earchy with Timing Constraints Design Database for
use with downstream tools.

SNUG San Jose 2000 33 ASIC Flow Engine for Timing Closure (AFETC) aMakefile

Generator to Automate Design Budgeter Methodology.

Figure 15. The dch_global.dct Script

#

#

change the directory path so that the data for this pass is found.

set TDT_dbdir [format "% %" [format "% %" $TDT_dbdir {.}] $TDT_pass]

Modify the search path so everyone is found.
set _search_path [format "% %" {./} $TDT_dbdir]
set search_path [concat $_search_path $search_path]

read and link design using search path to build it.

read_file [format "%%" [format "%%" [format "%%" [format "%%" $TDT_dbdir
{/}] $TDT _des] {.}] S$TDT dbext]

i nk;

grab the constraints setup in the .dc_setup file.
set_operating_conditions -max $operating_conditions_max -nin
$operating_conditions_mnin

set_wire_|l oad -sel ection_group $w re_| oad_sel ecti on_group
set_wire_l oad -node $wire_| oad_npde

read in the top |l evel constraints so they are appli ed.
set _constraint _file_in [format "%%" [format "%%" $TDT _des {.}] $TDT_conext]
source $ _constraint_file_in

generate a qor report

set _report_file_out [format "% %" [format "%%" [format "%%" [format "%%"
[format "% %" $TDT repdir {/}] $TDT_des] {.pass}] $TDT pass] {.qor.rpt}]
redirect $_report_file_out { report_qor }

nodify the attributes before we start working with the design.
foreach_in_collection TDT_cd [get_designs] {
current_design $TDT cd

if {[get_attribute $current_desi gn dont_budget] == "true" } {
set _dont _touch {true}
} else {

renpve_attri bute $current_design dont_touch

}
}

reset the design to the top

current _design $TDT_des

I'i nk

check_design report

set _report_file_out [format "%%" [format "%%" [format "%%" $TDT _repdir {/}]
$current _design] {_hier.chk.rpt}]

redirect $_report_file_out { check_design }

Loop Check Report

set _report_file_out [format "%%" [format "%%" [format "%%" $TDT_repdir {/}]
$current _design] {_hier.loop.rpt}]

redirect $_report_file_out { report_timng -loops }

Latch Checking

set _report_file_out [format "%%" [format "%%" [format "%%" $TDT_repdir {/}]
$current _design] {_hier.latch.rpt}]

redirect $ report_file_out { all _registers -level_sensitive }

note hard coded nane.
set file_ out [format "%%" [format "%%" [format "%%" [format "%%" [format

"%s%" S$TDT _dbdir {/}] $current_design] {_hier}] {.}] $TDT_dbext]
wite -h -0 $_file_out

customwi reload files if the side file exists

#
if { $TDI_pass >= 1} {

SNUG San Jose 2000 34 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 15. The dch_global.dct Script

iIT { [filTe exists $TDI_customw reload] J {
echo [format "¥%%" {Info: Reading Wreload Tcl File - } $TDT_cust om wi r el oad]
sour ce $TDT_custom wi r el oad
now interate on the file until we have read in all the wirel oads and attached
themto the target library
foreach _ny_fp $WrelLoadFiles {
set wireload file [format "% %" [format "% %" $TDT fpdir {/}] $_ny_fp]
if { [file exists $_ wireload file] } {
update_lib $TDT foundry lib $ wireload file
echo [format "%%" {Info: Reading in Wreload File } $ wireload_file]
} else {
echo [format "% %" [format "% %" {Warning: Wreload File } $ wireload_file]
{ Not Found.}]
}

set file_out [format "%%" [format "%%" [format "%%" [format "%%"
$TDT_dbdir {/my_}] $TDT foundry lib] {.}] $TDT dbext]
wite |lib $TDT foundry_ lib -format db -output $_file_out
el se {

echo [format "% %" [format "% %" [format "% %" {Info: No CustomWreload File:
$TDT_customwireload] { or Pass not greater than 1: }] $TDT_pass]

foreach_in_collection TDT_cd [get_designs] {

current _desi gn $TDT cd

set _file_out [format "%%" [format "%%" [format "%%" [format "Y%¥%s"
$TDT_dbdir {/}] $current_design] {.}] $TDT_dbext]

wite -format db -output $ file_ out

#}

H R e

exit
end of file

The db_global.dct was used by the Design Budgeter, with budget_shell, to build the module level
constraint. Within this script is the increment of the pass variable, and the generation of the
constraint files.

Figure 16. Thedb_global.dct Script
AFETC Generated Script - Edit wth care
Budget Conpiler sinple script
#
assune that .synopsys_pt.setup is read already

set the dbdir up for the proper pass.
set TDT_dbdir [format "% %" [format "% %" $TDT_dbdir {.}] $TDT_pass]

need to add dbdir to the path so everything can be found.
set _search_path [format "% %" {./} $TDT_dbdir]
set search_path [concat $_search_path $search_path]

#only if we are at pass 1 or better do we bother.
if we have a customwireload file then use the nmy_vendor library file in the db
directory
if { $TDT_pass >= 1} {
if { [file exists $TDT_customwi reload] } {

echo "Info: Referencing Library with Custom Wrel oad Mdel s"

set _ny_library [format "%%" {ny_} $TDT foundry_lib]

set link_library [concat $_my_library $link_library]

set link_path $link_library

}

read_db $TDT file
i nk

SNUG San Jose 2000 35 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 16. Thedb_global.dct Script

assunme that the user has build the constrainis wth both mn and max, Wiich
1is not supported in Budget shell. W nust reset the design first for all ti
aspects, then read in the constraint file. The constraint file nmust have in
check of the variable: synopsys_programname which is equal to "budget_shell
ar ound

all the minimumtimngs in order for this to work.

reset_design -timng

source $TDT_top_constraints

m ng
it a

i ncr TDT_pass
al | ocat e_budget \
-no_environnent \
-format dcsh \
-l evel $TDT_l evel \
-create_context \
-write_context \
-file_format_spec "$TDT consdi r/ 9. $TDT_pass. $TDT_consext";

exit;
end of file

6.4 The Generic Scripts

Although the tool outputs many generic scripts we will focus on the ones necessary for the design
budgeting process.

The wireload tcl script is an associated TCL list of wireload files and wireload table entries. This

file is used by the “dc_global” and “dch_global scripts” to read in and apply the wireloads to the

design. The associated list allows the user flexibility to choose at what level to apply the
wireloads.

Figure 17. Thegeneric wireload.tcl Script

AFETC Generated Script - Edit with care
Generic exanple of a wireload script for design.

list of wireload files found in the Fl oorplanning directory
et WrelLoadFiles { \

my_top.wl \

my_sub.wl \

#
#
#
Assune Avant! Pl anet Tools.
#
#
s

List of wireloads in the wireload files.
set WrelLoads { \
GROUP_top_w \
ny_top_w \
GROUP_sub_w \
nmy_sub_w \
}

Associated |list of wireloads and the designs they are used on
Shoul d be at | east one entry per WrelLoads from above.

Every wirel oad from above nmust be accounted for here even if
there is no design associated with them

set desi gnWrelLoad(GROUP_top_w) { \

nmy_top \

set designWrelLoad(ny_top_w) {}
set desi gnWreLoad(GROUP_sub_w) {}
set desi gnWrelLoad(ny_sub_w) {}

end of file.

SNUG San Jose 2000 36 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Theinitial conditions are provided as a starting point for the types of conditions to setup on at the
chip or top level. The template gives the user the types and styles of conditionsthey should use.

Figure 18. The generic_top.initial.dct Script

AFETC Generated Script - Edit with care

initial constraints for building design

for budgeting

set _period {10}

if !'[string conpare $_period NEED TO SET_PERI OD] {
echo {Error: Need to specify tightest period in initial cons file}
exit 1

set _half_period [expr $ period / 2]

set _waveform[list O $_half_period]

set _multiplier 2

set _input_delay [expr 0.65 * $_peri od]
set _output_delay [expr 0.35 * $_period]

set _inputs [all_inputs]
set _outputs [all _outputs]
set _register_c [all_registers -no_hier -clock_pin]

if { $_register_c == [list] } {
set _clock_pins [list]
} else {
set _clock_pins [all _fanin -to $ register_c -start]
create_cl ock $_clock_pins -name {reg2reg} -period $_period -waveform $_waveform
set_multicycle_path $_nmultiplier -from{reg2reg} -to {reg2reg}
}

create_clock -nane {sinple} -period $_period -waveform $_wavef orm
set _input_del ay $_input_delay -clock {sinmple} [renove_fromcollection $_inputs
$_cl ock_pi ns]
if { $_outputs !'= {} {
set _output_del ay $_out put_del ay -clock {sinple} $_outputs

}
end of file.

The generic_chip.dct script isused to generate the combined top and chip level. Often, depending
upon the type of pad-ring compiler. JTAG is consdered also at thistime. Also at thistimeit is
good to remove the DesignWare components and other structural manipulations.

Figure 19. The generic_chip.dct Script

AFETC CGenerated Script - EdIit wth care

Generation of the chip level conbined db file for use with down
streamtools. This file nmust have a nuch of the constraint

information as possible to use with the downstream tools.
#
#
#
s

change the directory path so that the data for this pass is found.
et TDT_dbdir [format "%%" [format "% %" $TDT_dbdir {.}] $TDT_pass]

The top | evel design has already been read in at this point we now need to
process the top level files.

Modify the search path so the source is found for the tap controller
set _old_search_path $search_path

set _search_path [format "%%" {./} $TDT_rtl]

set search_path [concat $_search_path $search_path]

set _file_in [format "%%" $TDT_des {_tap_state.v}]
read_verilog $_file_in
set _file_in [format "%%" $TDT_des {_tap.v}]

SNUG San Jose 2000 37 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 19. The generic_chip.dct Script

read_verilog $ filTe_In

current_design ${TDT_des} _tap

ungroup -all -flatten

conpile -map_effort ned

dont _touch $current _design

set file_out [format "%%" [format "%%" [format "%%" [format "%%"
$TDT_dbdir {/}] S$current_design] {.}] $TDT_dbext]

wite -o $_file_out

HHFHHFE M

now get the chip level design with pads.
set file_in [format "%%" $TDT_des {.v}]
read_verilog $_file_in

current_design $TDT_des;

since we read in the hierarchy file life should be find and no search path
changes are necessary.
set search_path $_ol d_search_pat h]

reset the search path so all the db files are found if necessary
set _search_path [format "% %" {./} $TDT_dbdir]
set search_path [concat $_search_path $_ol d_search_pat h]

i nk;

read in the top level constraints so they are appli ed.
set _constraint _file_in [format "%%" [format "%%" $TDT_des {.}] $TDT_conext]
source $ _constraint_file_in

generate a qor report

set _report_file_out [format "%%" [format "%%" [format "%%" [format "%%"
[format "% %" $TDT repdir {/}] $TDT_des] {.pass}] $TDT pass] {.qor.rpt}]

redirect $ report_file_out { report_qor }

HH O HHH

reset the design to the top
current _design $TDT_des

check_design report

set _report_file_out [format "%%" [format "%%" [format "%%" $TDT _repdir {/}]
$current _design] {_hier.chk.rpt}]

redirect $_report_file_out { check_design }

Loop Check Report

set _report_file_out [format "%%" [format "%%" [format "%%" $TDT_repdir {/}]
$current _design] {_hier.loop.rpt}]

redirect $_report_file_out { report_timng -Iloops }

Latch Checking

set _report_file_out [format "%%" [format "%%" [format "% %" $TDT_repdir {/}]
$current _design] {_hier.latch.rpt}]

redirect $ report_file_out { all _registers -level_sensitive }

note hard coded nane.

set file_out [format "%%" [format "%%" [format "%%" [format "Y%%s"
$TDT_dbdir {/}] $current_design] {.}] $TDT_dbext]

wite -h -0 $_file_out

exit
end of file

The floorplan script is shown as an example of moving data from db format to a verilog format
that third party tools use. Notice the dump_timing.tcl script which dumps the Avant! specific
timing details out to afile for use with the Avant! P&R tools.

SNUG San Jose 2000 38 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

Figure 20. The generic_fp.dct Script

AFETC Generated Script - Edit with care
Script for dunping data required by |layout tools

H I

al ways generate an error

set _basescript {WROTE | T}

if !'[string conpare $_basescript NEED TO WRI TE]

echo {Error: Need to Build Design Specific FP Scri pt}
exit 1

}

the the design to the top nodul es
set nodul e $TDT_des

read and link design using search path to build it, ASSUME it was read in on the

command |ine
1ink;

grab a tcl script to report the tinm ng of each |evel.
NOTE HARDCODED
source tcl/dunp_timng.tcl

grab file with stuff setup init.
sour ce $TDT_hi erarchy

nodify the attributes before we start working with the design.
foreach TDT_cd $Layout Bl ocksHi erarchy {

current_design $TDT_cd

DunpTi mi ng $current_design $TDT_pass $TDT_f pdir

}

foreach TDT_cd $Layout Bl ocksFl at {
current _design $TDT_cd
DunpTi mi ng $current_design $TDT_pass $TDT_f pdir
}

reset the design to the top and dunp the DB so we have a mmatch.
current _design $TDT_des

set file out [format "%%" [format "%%" [format "%%" S$TDT fpdir {/}]
$current _design] {.v}]
wite -hierarchy -format verilog -output $ file_out

exit
end of file

7.0 Trademark Information
Verilog is aregistered trademark of Cadence Design Systems, Inc.

SDF and SPEF are a trademark of Open Verilog International.
Synopsys, PrimeTime, DesignWare are registered trademarks of Synopsys, Inc.

Design Compiler, Test Compiler, Floorplan Manager, characterized, dont_touch,
dont_touch_network and uniquify, are trademarks of Synopsys, Inc.

Avant!, Plant!, Apollo! are trademarks of Avant! Corporation.

All other brand or product names mentioned in this document, are trademarks or registered
trademarks of their respective companies or organizations

SNUG San Jose 2000 39 ASIC Flow Engine for Timing Closure (AFETC) aMakefile
Generator to Automate Design Budgeter Methodology.

	ASIC Flow Engine for Timing Closure (AFETC) a Makefile Generator to Automate Design Budgeter Meth...
	1.0 Introduction
	1.1 The Goals of the AFETC Tool

	2.0 The Flow to Automate
	2.1 RTL to GTECH
	Figure 1. RTL to GTECH

	2.2 GTECH to Layout
	Figure 2. GTECH to Layout

	2.3 Layout Timing Closure
	Figure 3. Layout Timing Closure

	3.0 How AFTEC works from RTL to Layout.
	3.1 Budget Flow Improvements.
	3.2 The Improvements - Links to Layout.
	3.3 The Reports
	3.4 Directory Structure
	Figure 4. Directory Names and Data Flow

	3.5 An Example of Running the Tool.
	Figure 5. AFETC Calling Sequence
	Figure 6. Generic Chip
	Figure 7. Results of running AFECT

	4.0 Conclusions
	4.1 Recommendations

	5.0 Acknowledgments
	5.1 Third Party Tools
	5.2 Synopsys
	5.3 SNUG’s Past

	6.0 AFETC Generated Files of Interest
	6.1 The Designlist File
	Figure 8. The “designlist” file for the generic example

	6.2 Makefiles
	Figure 9. The root Makefile
	Figure 10. The Makefile.inc
	Figure 11. The Makefile.RTL
	Figure 12. The Makefile.GATES

	6.3 Global Scripts
	Figure 13. The gt_global.dct Script
	Figure 14. The dc_global.dct Script
	Figure 15. The dch_global.dct Script
	Figure 16. The db_global.dct Script

	6.4 The Generic Scripts
	Figure 17. The generic_wireload.tcl Script
	Figure 18. The generic_top.initial.dct Script
	Figure 19. The generic_chip.dct Script
	Figure 20. The generic_fp.dct Script

	7.0 Trademark Information

